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We point out that decoding algorithms which are based on the minimum dis-
tance of a block code cannot be used to achieve channel capacity. This degradation
is compared with the similar degradation caused by sequential decoding.

l. Introduction

It is well-known that block coding-decoding schemes
suffer several disadvantages relative to convolution
coding-sequential decoding schemes. The main disadvan-
tages are: (1) the nonexistence of a known sequence of
good block codes with relatively simple decoding algo-
rithms, and (2) the inability of good binary block-decoding
algorithms to perform well when hard decisions are not
used (the famous 2-dB loss on the white gaussian channel).

On the other hand, sequential decoding has a dis-
appointing flaw: it cannot be practically used to achieve
reliable communication at all rates below capacity, as Romp
limits performance. I wish to point out in this note that
a large class of block-decoding schemes suffer from a simi-
lar handicap. The class of decoding algorithms I will con-
sider I call minimum distance (MD) algorithms. An MD
algorithm is one which is based on the minimum distance
d of the code; i.e., it corrects up to (d — 1)/2 errors, but
no more. We shall see that on a binary symmetric channel
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with transition probability p, if p > 0.075%, that Reom, (p)
exceeds Ryp (p), the largest rate at which reliable com-
munication can be achieved by an MD algorithm. For
binary antipodal signalling over a white gaussian chan-
nel, with binary detector quantization, the situation is
more complicated for MD algorithm: there exists a dimen-
sionless rate R = 0.5377+ at which the minimum E;/N,
required for reliable communication is minimum, 2.547+,
In order to surpass this with sequential decoding—again
with binary quantization—one must use convolutional
codes of rates < 0.3196.

Il. An Unproved Assumption

Now before giving the details of this calculation, let
us admit that these results depend upon an unproved
hypothesis. That hypothesis is that for a fixed rate R, the
largest possible value for the minimum distance of a block
code of length n is asymptotically equal to n<H;* (1 — R),
where H, is the binary entropy function. We really only
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know that the best minimum distance is at least this good.
However, this hypothesis is widely believed to be true;
and if it should turn out to be false, the results of this
note can easily be modified and will not be qualitatively
changed.

IIl. The Details

The details of the calculation are quite easy. For the
BSC* with error probability p, capacity is 1 — H, (p), and

Reomp 1S

1-log. (1+2Vp{T—p))

By our above assumption, for large n an MD algorithm
will correct %2n« H;' (1 — R) errors, and so by the law of
large numbers if p <% H7* (1 — R) reliable communication
can be achieved. Thus we define Rup (p) =1 — H, (2p);
this is the supremum of the set of rates at which MD
algorithms will succeed in driving the error probabili-
ties to zero. Figure 1 is a plot of Reomp (p)/Cap (p) and
R (p)/Cap (p) for 0 = p = 0.25. For p = 0.25 Ryp = 0,
while

Reoms () l 1

Cap(p) | 2

As stated above, the two curves cross at p = 0.075355+.

For the white gaussian channel, with binary antipodal
signalling and binary detector quantization, the calcula-
tions are only slightly more difficult. If the energy of one
binary symbol is Eg, then the probability of detector

error is
2E;
pP= QJ No

0x) = V;_wﬁwexp<— t2—2>dt

1BSC = binary symmetric channel.

where
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and %N, is the spectral density of the noise process.
Instead of dealing with capacities, we wish to know the
smallest E;/N, for which the probability of error can be
made arbitrarily small. With block (or convolutional)
codes of rate R the energy available per channel symbol
is Es = Ey+ R. Thus with maximum likelihood decoding,
reliable communication can be achieved if R=1 — H, (p);
thus the minimum E;/N, is

<%) = o= (@ [H) (1~ R)}  (capacity)

For R.omp the equation is

R=1-log.(1+2Vp{—p)

ie.,

(%)mm _ 2_15(0_1[1 — QI F ;212 —1)% ]) o)

Finally, for MD decoding, we need

p= Q([%]Vz)é%&l(l - R);

(%) - 2_;(0—1 [% Hp (1 - R):Dg (Ruwo)

These values are plotted in Fig. 2. Note that both the Romp
and the Cap curves are monotone decreasing with R, re-
flecting the gains which accrue with increasing band-
width occupancy. However, the MD curve has its mini-
mum at R = 0.537724+ for which E,/N, = 2.547*. In order
to surpass this with Re.m,, we see that R =< 0.3196+ is
required. It is interesting to compare Fig. 2 with Fig. 6.49
in Wozencraft and Jacobs (Ref. 1, p. 442) where similar
behavior was observed in the performance of BCH codes
versus convolutional codes.
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Fig. 2. Comparison of behavior of maximum likelihood
Fig. 1. Comparison of R.,,, and Rypon a sequential, and minimum distance decoding on white
binary symmetric channel gaussian channel with hard limiting
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